
where Cl and C2 are arbitrary constants. We note that when e = 0 (8) changes into the well- 
known Nadai solution [3], and when a ~ 0 we obtain a new velocity field. 

Remark. The condition that the energy dissipation be positive imposes the following 
constraint on the value of the parameters: B -- ~Y > 0 if y ~ I--h, h]:~ 

We shall construct the possible invariant solutions on the subgroup XI + ~Xs. We shall 
seek a solution invariant with respect to this subgroup in the form 

u = f(y)e ~ ,  v = g(y)e ax �9 ( 9 )  

S u b s t i t u t i n g  ( 9 )  i n t o  ( 6 ) ,  we o b t a i n  a s y s t e m  o f  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s  

y(~!  - g') = (l' + ~ g ) Y ~  - -  r ~! + g' = 0 .  

F r o m  t h i s  we h a v e  

- V ~  - y~g" + 2 ~ g ' ~  - ~ V ~  ~ - y~g = o. 

The latter equation reduces by the substitution g' = gu to the Riecati equation 

Y u ~_ ~ = 0 .  ~' ~ : ~  + 2 ~  ~ r ~ _ .  ~ 
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STABILITY OF A VISCOPLASTIC RING 

S. V. Serikov UDC 539.374:539.382 

We present a theoretical study of the unsteady deformation of cylindrical metal shells 
under impulsive loading. We investigate the stability of the inertial motion of the bound- 
aries of a flat ring toward or away from the center under small harmonic perturbations of 
the boundaries, the velocity, and the stress tensor. We derive a relation for the wave num- 
ber at which the motion becomes unstable, and compare the result with experimental data. 

I. Examples of Modeling Processes. In contrast with articles on the dynamic buckling 
of cylindrical shells under impulsive external or internal pressures [I-5], we consider prob- 
lems with large plastic deformations (of the order of 100%). Our method of treating the 
mechanism of the development of unstable motion is similar to that employed in papers on the 
instability of motion of a finite mass of liquid with a free boundary [6-8]. 

Figure I shows the result of an experiment on the axisymmetric compression of a D16 
Duralumin cylindrical shell by detonation products. The initial outside diameter, wall 
thickness, and height of the shell were, respectively, 22 x 2.5 x 80 mm. After the experi- 
ment the average dimensions were 9.4 x 3.9 • 80 mm with an internal square opening (Fig. I, 
magnification 10 x). In the drawing of a 10 x 2 mm 12KhIMF steel tube to 6 x 2.2 mm without 
a mandrel, a square channel is formed (Fig. 2, magnification 10 x). If we consider another 
method of longitudinal milling of seamless tubing, namely the reduction of 86 • I0 mm 20 St 
tubing without a mandrel to 65 x 11 ~ in two-roller circular-oval passes, we obtain a square 
internal channel (Fig. 3). 

These examples show that over a wide range of initial deformation parameters of tubes 
(velocity of boundaries 1-1000 m/sec, mechanical properties of the shell material, etc.) we 
have a characteristic internal profile. In a number of cases in the drawing and reduction 
of thick-walled tubes, hexagonal, octagonal, etc. internal channels are formed [9, 10]. Wavy 
boundaries are formed in the hot drawing of seamless tubes (Fig. 4). Here it is believed 
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Fig. I 

that in the unsteady deformation of a cylindrical shell toward its axis the inner free bound- 
ary becomes wavy with a certain predominant wavelength as a result of unstable motion under 
small perturbations of the boundaries and velocity. 

We now consider the motion of a ring away from its axis. The shell under intense dy- 
namic loading of its inner boundary expands, and may fracture into individual pieces [11-13]. 
Here the assumption of the correlation of the number of fragments formed and the formation 
of unstable harmonics on the shell boundaries has a simple physical meaning. 

By making a certain approximation we investigate the stability of the inertial motion 
of a circular shell of viscoplastic material without restrictions on the initial wall thick- 
ness and diameter. 

2. Formulation of the Problem. We consider unsteady plane strain without twisting of 
an incompressible viscoplastic ring. Let r and 9 be plane polar coordinates with the origin 
at the center of the ring, and t ~ 0 the time. The components of the stress tensor ar, o0, 
are , and the components of the velocity vector vr and v 9 under unsteady strain of a medium 
in a closed region with a variable boundary are determined from the following equations. 

The equations of motion of a continuous medium outside the field of external body forces 
are 

Off r I OffrO ar - -  aO / OVr OVr 1 OVr v20 I 
Or + T - ~ f f  "+ r = P ( - g / - y v r ' ~ r  +-7-vo '~"  r ] '  ( 2 . 1 )  

t~ ~ ~,o {o% 0% t 0% . % ]  
~ + -~-'r +--V- = P ~V/- + ~r -bV + -7- % "gg + - -7 - -  j, 

where p is the density of the medium. 

The assumption of incompressibility of the medium leads to the familiar relation 

O V r j  Vr t OVO ( 2 . 2 )  
"gT+ 7 r oO - ~  

In the two-dimensional case an incompressible viscoplastic material is described by the 
equations [14] 

�9 Ovr as i 
% = a + 2~ ~ - - - 5 -  cos 201, a = -g -  (% + %), 

�9 t Ovo] as 
oe = ~ -]- 2,u, (-?- @ --r-- -~'~- ] -1- -~-- cos 201, 

[ 10vr 0% %)  a 8 ( 2 . 3 )  
�9 aro = ~ ~-7- " ~  -[ Or r . - -  "-if- sin 201, 

( 1  ovT 0% v o ][{'v t 0% 0%] 
tg 201 = \--~- ~ -4- ~ - -  T / i t ' 7 -  A- -7- 0 0 - -  Or 1' 
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Fig. 4 

where o s ~ 0 is the dynamic yield point, and ~ ~ 0 is the dynamic viscosity. For plane 
strain we take the axial component of the stress tensor Oz = o. 

Let Fi(t , r, 0) = 0 be the equations of the boundaries of the annular region which ex- 
pands or contracts toward its center. We require that the kinematic condition 

OF i OFi l OFi 
Ot -kvr q---7-ve'-'g~ =0  ( i = t ,  2) (2.4) 

and the dynamic condition 

OrCOS(r , n)+ are cos(O, n)= O, ~roCOs(r, n)+  aocos(O,n)= O, (2 .5)  

be satisfied on the load-free boundaries, where the direction cosines of the outward normal 
n to the boundaries are with respect to the coordinate axes in the plane. 

At time t = 0 we specify the region occupied by the incompressible viscoplastic medium 
with its boundaries, and the initial velocity distribution. 

Equations (2.1)-(2.5) together with the initial data form a closed mathematical model 
of the unsteady strain of a viscoplastic material in a region with a variable boundary. For 
o s = 0 and ~ ~ 0 we have the case of an incompressible viscous liquid, for ~s ~ 0 and ~ = 0, 
the model of ideal plasticity, and for o s = 0 and ~ = 0 Eqs. (2.1)-(2.5) describe an ideal 

incompressible liquid [6, 7]. 

3. Fundamental Motion of a Ring. We consider two cases of loading of a ring formed 
by two concentric circles of radii Rl and Re (RI < R2). In the first case the viscoplastic 
ring converges axisymmetrically toward its center for a given initial velocity distribution. 
In the second case there is axisymmetric inertial expansion of the ring. 

The exact solution of Eqs. (2.1)-(2.5) for axisymmetric motion of a viscoplastic ring 
is known [15]. Before writing the solution for the cases under consideration, we introduce 
the dimensionl~ss quantities 
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~o = %o/PV~o ' ~ ~ vireo' % = %/~0' R~ = ndn~o' 

o .  = %/pT~x o, ~ = ~/PVlo~lo,  ~o = R2o/Rlo' Vm # O, 

and from now on for simplicity we omit the bars over the dimensionless quantities. 

For axisymmetric motion of a ring we obtain from (2.1)-(2.5) and (3.1) the following 
relations for the components of the stress tensor: 

(3 .~ )  

% j = (~j Rj § + o,) m ~/Rj + ~ hpj (4~- hjni) (n;~ - ~-~), (3.2) 

~O. 3 = ~ .  3 + o ,  + 4 v R j R j r  -~ ,  ~ 0 ,  j = 0, 

where j = I corresponds to the solution for the converging ring, and j = 2 for the diverging 
ring. A dot over a quantity denotes its time derivative, and in both cases the components 
of the velocity vector are 

~r = R~n~ ~ ' ,  "0 = 0, blnx = h~n~, ( 3 . 3 )  

and the equation of the boundaries of the ring is given by F i = r -- R i. 

The law of variation of the inner boundary of the viscoplastic ring is determined from 
the Cauchy problem for the second-order nonlinear condition 

R ~ + ~ l h ~ + ~ h ~ + o . = o , n ~ = l ,  h ~ = T t  ~ t=o ,  
(3.4) 

a 1 = t + (• - t ) ,  w = ~ + (• - ~ ) i n ~ ,  a~ = 4~ (• - l ) l ~ n ~  la  ~. 
wR~lnw 

For inertial convergence of the ring toward the center we take Ri(0) = --I in the initial data, 
and for divergence of the ring Ri(0) = I. Since the ring material is incompressible, its 
outside radius is given by 

R 2=(n~+%-~ 1) 1/2. 

The ordinary second-order differential equation (3.4) is reduced to a first-order equa- 
tion by the substitutions 

z = hiS1, hi = z/R1, hi= (z'R1 -- z) zR[ 3, ( 3 . 5 )  

and then we obtain from (3.4) an Abel differential equation of second kind [16] in the form 

z z '~ (a  1 - 1 )  R ~ l z ~ a 2 z ~ o , R  1 = 0 ,  z ( l ) ~ l .  ( 3 . 6 )  

Here and later a prime denotes differentiation with respect to Ri. Suppose at t = 0 the ring 
is thin-walled with • = I + s0, and e0 = s0/Ri0 ~ I, where so is the initial thickness of 
the ring wall. From (3.4) and (3.6) we obtain 

Rlzz'--z ~+4vz+R~o,=O, z( t )=~ 1, ( 3 . 7 )  

which is accurate to terms of first order in E0. 

By introducing the new function u = (z -- 4v)/Rl, and substituting it into (3.7), we ob- 
tain u'(4v + Riu) = --o,. Taking u = u(t) as the unknown variable, we reduce the last non- 
linear equation to a linear equation in Ri. The solution of (3.7) for o, ~ 0 has the form 

R 1 - -  e - f(u)  t _ ( _ *  i e/(~)dT), /(u):[u2__(~l--4v)2]/2~,. ( 3 . 8 )  

~I--4V 

For o ,  = 0, v ~ 0, and o ,  ~ 0, ~ = 0, we o b t a i n  from ( 3 . 7 ) ,  r e s p e c t i v e l y ,  

z = T R 1 + 4 v ( l  - -  R1), z : ~ B 1 ~ t - - 2 ~ , l n R 1 .  ( 3 . 9 )  

The asymptotic solution of (3.7) is needed later for the investigation of the stability 
of axisymmetric motion of a viscoplastie ring under small p~rturbations of the boundaries. 
An analysis of (3.7)-(3.9) shows that the asymptotic �9 of (3.7) for ~, ~ 0, v ~ 0 
for convergence and divergence of the ring are, respectively, 

z~4v as R I - + 0  , 
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z . + R i y / t _ 2 % l n R 1  as RI__).R1 * (Rl.=e~/2%). ( 3 . 1 0 )  

Thus, from (3.3)-(3.10) we obtain the asymptotic representations of the fundamental mo- 
tion: 

for the converging ring (RI § O) 

/~1[tl = ~2R~ ~ 4v, RiRi ~ -- t6"r ~ R~ -~, R~ ~ %Ri-l, 
(3.11) 

x = R~/I~ x ~ %R~ ~, ~ = x (ft~/tt~ - h~/~) ~ -8~%~i-~; 

for the diverging ring (RI + RI*) 

80 
hi ~ 0, h~R i ~ - %, R~ ~ RI + R~I' 

x = R ~ / R ,  ~ t -1- e o R ~ ,  • ~ O. 

(3.12) 

4. Investigation of Stability. We investigate the stability of unsteady axisymmetric 
motion of a viscoplastic ring with free boundaries�9 We formulate the mathematical statement 
in Eulerian coordinates by analogy with [14]. We investigate the stability of the fundamen- 
tal motion of the ring, determined by the equation of Sec. 3, for small perturbations of the 
velocity, the stress tensor, and the ring boundaries. Since the elementary perturbation is 
small, we assume that the principal direction in the perturbed motion corresponding to the 
direction of the tangent to the perturbed surface of the shell forms a small angle with the 
principal direction of the unperturbed ring. 

The method for deriving the system of mathematical relations for perturbed motion of a 
strong ring with free boundaries is known [17, 18]. Hence, in view of the awkwardness of 
this type of problem, we indicate only thesequence of the calculations�9 

We express the components of the velocity, the stress tensor, and the ring boundaries 
in perturbed motion as a sum of the fundamental (axisymmetric) motion and small perturba- 
tions, and linearize Eqs. (2.1)-(2.5). The linearization of the incompressibility condition 
(2.2) of the medium under consideration ensures a sufficiently smooth flow function�9 Sub- 
stituting the linearized components of the stress tensor (2�9 into the equations of motion 
(2.1), and expressing the velocity components in terms of the flow function, we obtain two 
linear equations for the average stress and the flow function. After differentiating one 
of these equations with respect to r and the other with respect to e, and subtracting, we 
obtain for the flow function a linear partial differential equation for the fourth order in 
r and e, and the first order in t. 

The linearization of the kinematic (2.4) and the dynamic (2�9 boundary conditions, 
taking account of the mobility of the boundaries, gives six relations: four from (2.5) for 
the formulation of the boundary value problem for the flow function, and the other two for 
the determination of the perturbation of the shell boundaries for a known flow function and 
given initial conditions�9 The form of the differential equation for the flow function and 
the boundary conditions enables us to seek solutions for the average stress, the flow func- 
tion, and the boundaries of the perturbed ring which are harmonic in e. This substantially 
simplifies the problem, which after the introduction of the new variable y = inr/R~ takes 
the very simple form 

) -- O*--8j,]=O (O<y<Inx); (4"I) 
-  h1,1 + + L - o ,  + ( 8 -  

034 +~i0=4 % [_~yar .~y ] ~ (Oa4 0 '  4 j 04) (4.2)  
otou R~ Oy~- ~h~R~ +(~'-4) ~2~% - .~ , .  o - ~ - ~ - ~ j -  W =o (y=l.RdR1); 

~ ( h ,  ) ( % .  , , [ o ' r  o4 ) 
, (4.3) 

(y = In Ri/Bx); 
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~ ____..~ r ~.=0 (y=lnB~lBi), ~i(O)=~io, ~2(O,y)=O. (4.4) 

Here ~(t, y) and ~i(t) are, respectively, the amplitudes of the harmonic perturbations of 
the flow function and the ring boundaries, ~ is the wave number of the harmonic perturbation, 
i = I corresponds to the inner boundary of the ring, and i = 2 to the outer boundary. 

The introduction of the new function ~(t, y) by the formula 

= O~/Oy ~ -  og% (4.5) 

gives Eq. (4.1) the form 

�9 ve-~ ( O~p 400-~-~y +8~) =0. (4.6) 
4RiRi 

5. Construction of the Solution for a Ring Converging toward Its Center. In this case 
the asymptotic relations (3.11) are valid. We introduce the small quantity ~ = R2e 2y (~ § 0 
as Ri § 0). Assuming R~RI % 4~ in (4.6), we obtain the parabolic equation 

[~ Ogot ~ I o ,  fi ~0~9 ~ ~ (5.1) 
- + = o .  

We note that Eq. (5.1) contains the small parameter B in a singular way [19, 20]. In 
this case the asymptotic expansion of the solution in terms of the small parameter takes the 
form 

- . ~  ~(t,y)_ [~ (t, y) + ~(~, y)] ~, ~=t/~ (5.2) 
7z=O 

To shorten the calculations and to clarify the discussion in obtaining the asymptotic solu- 
tion of the singularl.y perturbed parabolic equation (5.1), we assume B is constant. We note 
that the derivatives B = 2BRI/RI and ~nB/~yn = 2nB do not introduce singularities as B § 0, 
and affect only the order of accuracy in subsequent terms of the series with n /> i. For the 
first binomial of series (5.2) ~0= 0 0 q ~ l + q ~  we have from (5.1) 

2 0 o Ocp ~ .r 0 %. 
-%~ -~s ~ =o, 
Oy 2 Oy 2 

from which we obtain 

~ = c~ (t) + % (t)v, 

w h e r e  c3 a n d  e~ a r e  c o n s t a n t s .  

For a known 
the form 

(5.3) 

~0 the solution for ~0 is determined with the same accuracy from (4.5) in 

Y 

~0 =%(t) e~V q_% (t) e-~+ i ~ ~~ shco(Y--z)dx" (5.4) 

0 

Before substituting (5.4) into the boundary conditions (4.2) and (4.3) to obtain the system 
for determining the unknown functions of time, we list the values of integrals which will be 
needed later: 

i C 1 C 2 e 4~ 

0 

y2t 

c 1 c 2 e 4~ 
r (x) sh = (? - -  x) dx = ~ (ch coy - -  i) 4- ~-~ (sh =? - -  =?) + I v 2, (aica @ a~%), 

. iT-=/ 
PV . c ,  c~ 2 exp ( - -  v~t/4~) 
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v -4- ~,=ln• a~= V-~-sh V--~-?--~osh~ov, 

%=/~-chV~-2 ~,--cochov, o~2#v/2. 

(5.5) 

For oJ 2 = v/2 the functions a i take a somewhat different form. The third terms in (5.5) are 

of higher order in the small parameter B than the first two terms, and in constructing the 
asymptotic solutions they do not affect the first term of the asymptotic series. 

Henceforth we replace the time derivative in terms of RI by the relation d/dt = Rld/dRl, 
and taking into account the asymptotic relations (3.11) and the values of the limits lim 
cosh(wln x)/~ = I/2 and limtanh (~in x) = I as ~ § ~, we obtain from (5.3)-(5.5) and 
(4.2), (4.3) the system 

4co(%' - -  c s )  R l + 2 c o '  ~ ( 1 + 2 c o ) % - - 2 ~ ) s ( 2 r  

2,0(% ~-~%)+co-~(~ + c0- c o ( ~ +  co -  2 )~  - 
(a~) L 

, (,+~) (co=s+2co~-~) ] 
- -  r (co n - -  r - -  2 ) : • 1 6 2  -Y ~ .  c ! 21-= 4(o %j = 0 ,  

(5.6) 
2o) (r - -  i) % + 2(o (r + l) % + c 1 = coql~i /~l  ' 

2o) (co - -  i )  % + 2(o (to -i- 1) n - ~ ~  + ~--- ( i  - -  2(o - 1  + t ~  c z + 

~2 (o 1 
+ i ( ~ - ~ _  2~-s + ~ -~ )~  = -: coqs ~-7 •  - ,  

where q i =  ( ~ * + 4 v ~ . / / I - - + 2 - - ~ . / ;  ql ~32v ;  % ~ t 6 v .  
~l l~4RiR  i z i }  

Taking account of the initial conditions for the amplitude of the perturbation of the 
flow function on the boundaries of the ring ,0(0,0)= ~~ at t = 0, we can take c5(1) = 
c6(I) = 0 for RI = I when the constants cj (j = I, 4) are not equal to zero at t = O. Hence, 
as R1 § 0 and ~ ~ I, the solution of system (5.6) has the form 

C 1 = - -  203 ( O I  1 "4- ]-6~'~i/{11), C s = 2co2 (Ol./'l "+ i 6 7 ~ l R 1 1 ) ,  

t t 
% = - 2 - ( I 1 + I s ) '  % = Y ( I ' - - I s ) '  ( 5 . 7 )  

I1 = __ 8(ou ~1 [ p 5 2 (  ~ 1 -  ~ -~~  -~ ~ c o - 2 p - l • 1 7 6  j l ( P ) d p ,  
1 

R 1 

= - -  ]1 (B1) = - ' ~  (Bi  - -  l ) ,  a = (~,/(4,) 2, 

w h i c h  i s  a c c u r a t e  t o  t h e  l e a d i n g  t e r m s .  

S u b s t i t u t i n g  ( 5 . 4 )  i n t o  ( 4 . 4 )  a n d  r e p l a c i n g  t h e  t i m e  d e r i v a t i v e  i n  t e r m s  o f  t h e  r a d i u s ,  
we o b t a i n  f o r  t h e  a m p l i t u d e s  o f  t h e  h a r m o n i c  p e r t u r b a t i o n  o f  t h e  r i n g  b o u n d a r i e s  t h e  d i f f e r -  
e n t i a l  e q u a t i o n s  

6) �9 CO 
(~; + R;-lh) i l  = 7 1  (% + %), (~; + ~-IR;~)  R~ = ~ [ ~  + %~-~ 

+ CO--2C I (ch o?-- I) + ~-ac 2 (sh ~? -- co?)]. (5.8) 

We note that 

c~• (~ + c~x - ~  = I1 ch co? + I2 sh ~?, 

and we introduce the new function 

N=•176 s, •176 (5.9) 

We derive a system of integrodifferential equations for determining ~i and ~ from (5.7)- 
(5.9). In order to eliminate the two different kinds of integrals in the second equation 
of the system, we subtract twice the second equation from the first to obtain two first-order 
differential equations including Ii or I2. Isolating the integrals after differentiating 
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with respect to the radius and using (3.11), we have from (5.7)-(5.9) a system of ordinary 

second-order differential equations 

R,[~" ~' (t  -I- a(oZRel) R,['~ @ (o~ (2 @ aR~) ix + 8R~TI' --,2(ozq 0, (5.1o) 
8~R~I"-- 2(Oa~B~I]' -[- lO(oe~o ~] -- + R~(R~[~ @ R~[' 1 -- 2(o~[,)= O. 

The asymptotic expansion of the solution of the singularly perturbed system (5.10) in 
terms of the small parameter 2 is given by a series [20] analogous to (5.2). The first ap- 
proximation to the solution of system (5.10) as a0 + 0 and R1 § 0 has the form 

2 ~ • ~ R 2  --m _ _  - % -  

(5.11) 
92 

~1 ~ y z B 1  a @ ? a B l Z ,  h i ,  2 = -72-- ( i  - ?  2(o _+ m l ) ,  

where  m =  i ~ / - ~  ~ = a~2/2; m1=-1/ (1- -2~)  2 - 3 2 + ;  ~j--const ;  i =  t, 4. 

C o n s i d e r i n g  the  r e a l  p a r t  f o r  ~1 and u s i n g  ( 5 . 9 ) ,  we o b t a i n  from (5 .11 )  as R1 + 0 the  
asymptotic forms 

~1 ~ (Vl :~ V2) C0$ In aR2 ' ~2 ~ %~0+1R1-3/2 (?a -r VaRx-'~ �9 (5.1 2) 

Consequently, in the inertial convergence of a viscoplastic ring toward the center, 
small perturbations of the boundaries increase without bound at the outer boundary, and on 
the inner boundary have a wavy character with a bounded amplitude. The perturbation on the 
outer boundary of the ring increases with increasing a0. This parameter characterizes the 
relative thickness of the ring wall at t = 0. 

We note that in the inertial motion of a viscoplastic shell toward its axis the inside 
radius practically never reaches zero. For example [21], in experiments on the compression 
of cylindrical shells by a layer of explosives an explosive vaporization of inner layers of 
the shell was observed as the result of the transformation of kinetic energy into heat. There 
is an inner channel in the contracted shell. Denoting by RI, the value of RI at the instant 
the ring stops moving, we have from (5.12), under the assumption of a maximum value of the 
amplitude of the harmonic perturbation on the inner boundary of the shell, ~R~, = I. By 
using (3.1) we obtain the dependence of the wave number on the dimensional parameters in the 
form 

~0 = R1--  Cff ,/ " 

6. A Ring Expanding from the Center. In this case we have the asymptotic relations 
(3.12). We introduce the small parameter ~ = R1/RI, and use (4.6) to obtain the singularly 
perturbed equation 

The asymptotic expansion of the solution in terms of the parameter ~ has the form (5.2). 
We note the equality 

= (RIR1 - -  h~) ~ 1 2 ;  ~ = (i  - -  ~) ~--1, P~e x = t/~. ( 6 . 2 )  

To first-order terms as ~ § 0 we have 

__ , OT: ( 0 ~ _ _  2"0) O. (6.3) 
o h m = o ,  = 

Oy 2 

We obtain from (6.2) and (6.3) 

q~ (t, y) = c~ (0 ch o~y -4- c~ (t) st, coy, 

~ (t, y) = (C 8 + C4y ) exp - -  ~ ~ b (I:) d~ , 
0 

(6.4) 

where b = ~./4R~ (i ~- 6) (C a, C~ -- eonst). 
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For a known function ~=~0q_%0 we determine from (4.5) the value for ~0 by using Eq. 

(5.4). Repeating the series of arguments of Sec. 5, noting the limiting values (3.12), in 
particular sinhy~ % g0R~ e and coshy~ % I, and considering the solution of the system for 
the unknown functions of time in the form of an asymptotic series in the small parameter 
[20], we obtain for the first term of the series (for ~ = 0, when ~i = ~2 = ~) the following 
equation for ~: 

d~ ,~_}_ ~ q - ' ~ l  [ q-bR-l~ C2-4- 3Je-f2 bC=J~('Odx = 0 ,  ( 6 . 5 )  
d~ o 

where q~, f2, and C2 as functions of time are determined from the relations 

ql = 4~R~ (o', -]- 4V~)/(o', + 2v~), /2 ('r) = - -  30) 2 S b (%') dT, 

o ( 6 . 6 )  d2 C___~_~ 
+ (2 - 3~2~) _ ~  _ 2~ (2 + 3 J )  c 2 = o. 

d~ 2 

Differentiating Eq. (6.5) with respect to T and isolating the integral, we obtain 

2 d~ 
B - ~  + ~ - ~  + ~ +  d--7-=0,  

B = [ ~ ,  A = I -4- 2 ~* ~ ' o ,  + 2~fi }" 

(6.7) 

We introduce the new variable p = RI/RI, -- I, where RI, is the value of the inside 
radius of the ring at the instant it stops moving. For the expansion of th~ ring we have 
RI § Rl,, from which p § 0. Trans 
a system of ordinary second-order 

forming to the new variable in (6.6) and (6.7), we obtain 
differential equations for E(p) and C2(p) 

+ 
\ l 

( 6 . 8 )  

dp 2C" ' + r , Jl ' =  + = o 

where primes denote differentiation with respect to p. 

It follows from (3.12) with an accuracy up to first-order terms in p that B ~ p(1 - p), 
~ --[o,R~, 2 + p2](I -- 2p). ~ ~ 2p(2o,R~2 + ~2)(1 _ 3p), from which 

;2 
d,d---" = ; - ' ' ~  ~-- ;2 I~ + k ) -"  T,~ - d, \ ; ) 

After linearizing the coefficients in (6.8), we obtain the system 

~" - k~;~' 9~ k~ + 'k~'~ C'~ = O, 
-- T 4 R ~ ,  ( t + k )  (6.9) 

For a fixed value of the small parameter p the solution of system (6.9) has the form [16] 

h 

---~P~(q-P)sh ~ ( p - q )  dq, . k ; R ~ :  C'~<q) e - = m 1 exp (nip~ "p2) -4- m 2 exp (n2p/p2) __ 2k(k -4- 1) 2p2 
o , ( 6 . 1 0 )  

C~ = m8 exp(n3p/p ~) + m,exp (n4p/'p'). 

H e r e  t h e  m j ,  w h e r e  j = 1,  4 ,  a r e  i n t e g r a t i o n  c o n s t a n t s ,  a n d  t h e  n j  a n d  X a r e  g i v e n  b y  t h e  
e q u a t i o n s  

i i 
n l = - ~ ( ~ + k ) ,  n 2 = - - ~ ( L - k ) ,  X='k  V t ' ~ - 9 ~  

3 2 11/2 
n3, 4 = ! L1 - -  t + ~ -  
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Taking account of the limiting equations 

Iim (p/p) =0, lira (p/p~)=l/2k, 

we have from (6.10) in the asymptotic approximation the following relation for the amplitude 
of a harmonic perturbation of the boundaries of the ring: 

2" --I 

f rom which  i t  f o l l o w s  t h a t  ~ + ~ as  p + 0.  I n  t he  s p e c i a l  c a s e  na = k ,  t h e  i n s t a b i l i t y  of  
t h e  m o t i o n  of  t h e  r i n g  i s  e x t r e m e .  F o r  a r a p i d  e x p a n s i o n  of  t h e  s h e l l  we have  f rom ns = k 
a r e l a t i o n  f o r  t h e  wave number w~ ~ ( 8 / 3 k ) ( 1  + 5 k / 4 ) .  L e t  c ,  = I n R 1 , / R 1 0  be  t h e  l i m i t i n g  
v a l u e  o f  t h e  l o g a r i t h m i c  s t r a i n  of  t h e  r i n g .  U s i n g  ( 3 . 1 ) ,  we o b t a i n  t h e  f o l l o w i n g  r e l a t i o n  
f o r  t h e  wave number c h a r a c t e r i z i n g  t h e  u n s t a b l e  d e f o r m a t i o n  of  a v i s c o p l a s t i c  s h e l l  as  a 
f u n c t i o n  o f  t h e  d i m e n s i o n a l  p a r a m e t e r s :  

2V~0e~* ( 5a, e_le,~'/~. (6.1 1) 

7. Discussion. Let us consider the experimental evaluation of Eqs. (5.13) and (6.11). 
There are experimental data [22] on the impulsive loading of metal tubes by the explosion of 
charges located concentrically on the outer surface of a shell. Seamless tubes of St 10 and 
St 20 were used in the experiments. The experiments show that the convergence of the tube 
walls toward its axis is accompanied by buckling and the formation of waves on the shell 
boundaries [22, 23]. 

Table I lists experimental data on the specific impulse I0, the strain c2, = (Rl0 -- 
RI,)/RI0 in the central cross section of the compressed tube, and the number of waves (wrin- 
kles) w e in this cross section. In experiments I-3 the tube material was St 10, and in the 
remainder it was St 20. The dimensions of the tubes Rl0 • so • h in experiments I, 2, 4-6 
were 54 • 4 • 216 mm; in experiment 3 they were 54 • 4 • 1080 mm; in experiment 7 they were 
54 • 4 x 360 mm. The number of waves w0 was calculated with (5.13), using a dynamic viscosity 
for steel [24, 25] p = (4-5)'!04 kg/(m, sec) and a density 0 = 7 85"103 kg/m 3. The dynamic 
yield point for St 10 and St 20 was calculated from statistical experimental data according 
to [26], using o s = 0.37 GPa and o s = 0.41GPa, respectively, The value of RI, was deter- 
mined from the incompressibility condition of the material, from which it follows that 

- = - R 0, = % (I - 

The w e l l - k n o w n  c o m p u t a t i o n a l  f o r m u l a s  [5 ,  27] f rom t h e  d y n a m i c a l  t h e o r y  of  t h e  b u c k l i n g  
of  c y l i n d r i c a l  s h e l l s  u n d e r  p l a s t i c  f l o w  g i v e  a r o u g h e r  e s t i m a t e  t h a n  ( 5 . 1 3 )  o r  t h e  f o r m u l a  
i n  [28]  d e r i v e d  f o r  t h e  e l a s t i c  b u c k l i n g  of  t h i n - w a l l e d  t u b e s .  T h i s  p r o b l e m  was t r e a t e d  i n  
more d e t a i l  i n  [2 ,  22,  2 8 ] .  We n o t e  t h a t  f o r  t h i n - w a l l e d  s h e l l s  ( s0 /R20 ~ 0 .05)  t h e  c a l c u l a -  
t i o n  of  t h e  h a r m o n i c s  w i t h  Eq. ( 5 . 1 3 )  u n d e r e s t i m a t e s  t h e  e x p e r i m e n t a l  r e s u l t .  The i n t r o d u c -  
t i o n  of  t h e  f a c t o r  / R l 0 / s 0  i n t o  ( 5 . 1 3 )  g i v e s  good a g r e e m e n t  w i t h  e x p e r i m e n t  a l s o  i n  t h e  c a s e  
of  i n t r i n s i c a l l y  t h i n - w a l l e d  s h e l l s  ( c f .  e x p e r i m e n t a l  d a t a  i n  [4 ,  2 8 ] ) .  

We c o n s i d e r  t h e  e x p e r i m e n t a l  r e s u l t  on t h e  r e d u c t i o n  of  a t u b e  of  S t  20 w i t h o u t  a man- 
d r e l  ( F i g .  3 ) .  Here  w i t h  R1,  = 26 .5  rmn and t h e  r e m a i n i n g  p a r a m e t e r s  as  l i s t e d  a b o v e ,  we 
o b t a i n  f rom ( 5 . 1 3 )  w0 ~ 4,  which  a g r e e s  w i t h  e x p e r i m e n t .  L a b o r a t o r y  and i n d u s t r i a l  r e s e a r c h  
showed t h a t  t h e  d i f f e r e n c e  i n  t r a n s v e r s e  w a l l  t h i c k n e s s  was l e s s  f o r  t h e  l o n g i t u d i n a l  r o l l i n g  
of  t u b e s  on m u l t i s t a n d  m i l l s  t h a n  when r o l l e r s  w i t h  a wavy p r o f i l e  were  u s e d  i n  t h e  f i r s t  
s t a n d s  of  t h e  m i l l  (w0 = 6 -8 )  [ 2 9 ] .  

We now d i s c u s s  Eq. ( 6 . 1 1 )  f o r  e s t i m a t i n g  f r a g m e n t  f o r m a t i o n  i n  t he  f r a c t u r e  of  m e t a l  
r i n g s  and t u b e s  by d e t o n a t i o n  p r o d u c t s .  T h e o r e t i c a l  [12 ,  17] and e x p e r i m e n t a l  [ 30 ,  31] r e -  
s u l t s  show that the number of fragments varies nearly linearly with the initial velocity of 
expansion of the shell. Table 2 shows experimental data [30] on the number of fragments w e 
in the fracture of aluminum rings with Os = 0.12 GPa, ~, = 0.28, and p = 2.75"103 kg/m 3. The 
thickness so of the ring wall and the velocity of expansion were varied. The ring and the 
explosive charge were 10 mm high, and the inside radius was 20 nan. We introduce into (6.11) 

T 
the scale factor (Rl0/S0)S/2 by the formula w, = w,(Rz0/s0) 2/3 The calculated (w~) and ex- 
perimental (~e) values in Table 2 show satisfactory agreement; 
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TABLE I 

No. 1~.10 " 2  
kN ' sec /m 2 

0,10 
0,t0 
0,t0 
0,23 
0,63 
0,53 
0,t6 

E2* ~e ~0 

0,11 6 3--4 
0,36 6 5--6 
0,4t 8 5--7 
0,36 8 5--6 
0,77 7 8 -  10. 
0,53 7 8-- t0 
0,72 7 9--11 

TABLE 2 

No. mV/s SOlnm o~ 

450 2 
240 4 
200 6 

iOOO 2 
500 4 
370 6 

tt00 4 

(9 (9  
e 

20 24 
12 I07 

40 50 
23 t8 
t6 11 
50 37 

28 
8 
5 

63 
t7 

9 
38 

Using the well-known fracture criterion, we derived in [32] the expression ~, = cg2•R20/ 

V10 for the average length of a fragment in the fracture of a metal shell expanding iner- 
tially. Here c is the speed of sound in the ring material, and e2, = R2,/R20 -- I. Hence [12] 
the number of fragments is determined by the equation ~i = 2vR2,/l,. By taking R20/s0 as a 
scale factor, we obtain 

' 2aV1~ (i + ~,) .  (7.  I ) 
(01 - -  C8082, 

The results calculated with (7. I) for the experiments [30] described above and sum- 
, T 

marized in Table 2 show that w, and w1 are close to one another. We note that the accuracy 
of the quantitative comparison of the calculated and experimental values depends strongly 
on the magnitude of the limiting (logarithmic) strain. In general the experimental values 
We depend on the strain rate and the sample thickness, whereas ~ was assumed constant in the 
above calculations. This may account for the necessity of introducing scale factors of the 
type R20/se. 

Thus, our study of the problem of the stability of inertial motion of a viscoplastic 
cylindrical shell under small harmonic perturbations of the boundaries, the velocity, and 
the stress tensor enables us to determine the wave number of the harmonic for which the max- 
imum increase of the amplitude of the perturbation of the boundaries is expected. In the 
contraction of a ring toward its axis, the number of unstable harmonics depends strongly on 
the dynamic viscosity of the shell material, whereas in the expansion of a ring this depen- 
dence is of second order. The relations derived for the number of wrinkles and fragments 
in the buckling (fracture) of actual metal rings are not inconsistent with the experimental 
and theoretical results, and in some cases agree well with experiment. 
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